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Long-read metagenomic sequencing 
reveals shifts in associations of antibiotic 
resistance genes with mobile genetic elements 
from sewage to activated sludge
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Abstract 

Background: There is concern that the microbially rich activated sludge environment of wastewater treatment 
plants (WWTPs) may contribute to the dissemination of antibiotic resistance genes (ARGs). We applied long‑read 
(nanopore) sequencing to profile ARGs and their neighboring genes to illuminate their fate in the activated sludge 
treatment by comparing their abundance, genetic locations, mobility potential, and bacterial hosts within activated 
sludge relative to those in influent sewage across five WWTPs from three continents.

Results: The abundances (gene copies per Gb of reads, aka gc/Gb) of all ARGs and those carried by putative patho‑
gens decreased 75–90% from influent sewage (192‑605 gc/Gb) to activated sludge (31‑62 gc/Gb) at all five WWTPs. 
Long reads enabled quantification of the percent abundance of ARGs with mobility potential (i.e., located on plasmids 
or co‑located with other mobile genetic elements (MGEs)). The abundance of plasmid‑associated ARGs decreased 
at four of five WWTPs (from 40–73 to 31–68%), and ARGs co‑located with transposable, integrative, and conjugative 
element hallmark genes showed similar trends. Most ARG‑associated elements decreased 0.35–13.52% while integra‑
tive and transposable elements displayed slight increases at two WWTPs (1.4–2.4%). While resistome and taxonomic 
compositions both shifted significantly, host phyla for chromosomal ARG classes remained relatively consistent, 
indicating vertical gene transfer via active biomass growth in activated sludge as the key pathway of chromosomal 
ARG dissemination.

Conclusions: Overall, our results suggest that the activated sludge process acted as a barrier against the proliferation 
of most ARGs, while those that persisted or increased warrant further attention.
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Background
Antibiotics are critical for the prevention and treatment 
of bacterial infections. The spread of antibiotic resist-
ance undermines the effectiveness of antibiotics and 
is therefore a growing global public health threat [1, 2]. 
Wastewater treatment plants (WWTPs) receive sewage, 
including high levels of human pathogens, antibiotics and 
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their metabolites, metals, and other agents that could 
potentially select or co-select for antibiotic-resistant bac-
teria (ARB) carrying antibiotic resistance genes (ARGs) 
[3, 4]. WWTPs thus may play a role in the development 
and spread of antibiotic resistance [5, 6]. Following physi-
cal settling, sewage is typically routed to an activated 
sludge (AS) basin, an aerated, microbially-rich environ-
ment that is among the most widely applied biological 
treatment practices in the world. AS harnesses microbes 
to efficiently and economically remove organic contami-
nants and nutrients, thus protecting aquatic receiving 
environments. However, there is concern that the AS 
environment may be fertile ground for ARB propagation 
and dissemination of ARGs due to high microbial den-
sity, diversity, and activity, as well as pressures that might 
select for ARBs and facilitate ARG transfer [7, 8].

ARGs carried collectively across microbial commu-
nities (i.e., resistomes) and individual ARBs have been 
surveyed in AS and compared to sewage influent at 
individual WWTPs or multiple WWTPs from the same 
region using various methods [9–13]. Findings have con-
flicted with respect to whether AS treatment has the net 
effect of amplifying [7, 10, 14, 15] or attenuating [16–19] 
ARGs in the influent. Differences in results may relate 
to regional variations in sewage resistomes, varying 
treatment performances among WWTPs, the selected 
monitoring targets (individual ARGs/ARBs versus full 
resistomes), or data analysis/normalization approaches 
[9, 20, 21]. A detailed examination of the fate of sewage-
borne ARBs and ARGs across a global transect of rep-
resentative WWTPs using a consistent methodology is 
needed to provide insight into the role of the AS process 
as either a net amplifier of or a barrier to antibiotic resist-
ance dissemination.

Particularly lacking in prior studies is the ability to 
identify the bacterial carriers of specific ARGs and pre-
cise tracking of the fate of specific ARB and ARGs when 
sewage is introduced into the AS basin. Methodological 
challenges in obtaining contextual information about 
ARGs, especially host organisms and co-location with 
mobile genetic elements (MGEs), which are instrumen-
tal in the dissemination of ARGs, have been a barrier to 
achieving this goal. Culture-based methods can readily 
track one or a few ARB at a time [16, 22], but are inca-
pable of characterizing entire resistomes [16]. ARG-host 
and ARG-MGE linkages are often indirectly evaluated via 
simple correlations or network analysis of contigs assem-
bled from short reads [10, 23, 24]. However, the accuracy 
of correlation-based analyses is questionable, because the 
putative relationships identified may be circumstantial 
or mediated by other unknown or unaccounted for vari-
ables and the accuracy of assembly-based methods can 
be dubious and challenging to verify [25–28].

Nanopore sequencing technology yields long reads 
from several to hundreds of kilobases. Long reads make 
it possible to directly evaluate contextual information 
and determine whether an ARG is located on a plasmid 
or a chromosome [26, 29]. It is also possible to identify 
host taxa when the ARG is located on a chromosome, 
although this is more difficult to determine with certainty 
when the ARG is located on a plasmid, as these can be 
hosted by multiple taxa [30–33]. Nanopore sequencing 
has been more often used for whole genome sequencing 
of bacterial isolates, with fewer applications toward char-
acterizing highly complex communities [26, 32–35]. One 
recent study used nanopore metagenomic sequencing of 
wastewater and provided a useful approach for quantify-
ing ARGs and mapping them to their hosts and/or their 
genetic context. This study, however, only examined 
three WWTPs (all in Hong Kong) and did not provide an 
in-depth comparison of ARG associations with MGEs in 
influent versus AS [26].

Here, we sought to identify overarching trends as 
to how the AS process alters raw sewage resistomes by 
applying nanopore sequencing across five geographically 
disparate WWTPs located in the USA, Sweden, Swit-
zerland, Hong Kong  (China), and India (Additional file: 
Table S1). Secondly, we sought to evaluate critical con-
textual information about the identified ARGs, including 
their genetic location (plasmid or chromosome), co-
location with non-plasmid MGEs (transposable elements 
etc.), and the taxonomy of putative bacterial hosts. The 
five diverse, globally distributed WWTPs were treated 
as biological replicates throughout this study to support 
robust and generalizable conclusions. Overall, the con-
textual information yielded by nanopore sequencing pro-
vides powerful insight into the fate of ARGs and ARBs in 
sewage subjected to AS treatment.

Methods
Sample collection and preparation
Triplicate samples of raw sewage influent (1 L, prior to 
grit chamber and primary sedimentation) and AS (50 
mL, collected at end of aeration stage) were obtained 
from five globally distributed WWTPs treated as bio-
logical replicates (Table S1). Samples were kept on ice 
and transported to a local laboratory within eight hours 
of collection. All samples were treated uniformly fol-
lowing the same protocol to support relative compari-
sons made throughout this study. Biomass in influent 
samples was concentrated onto 0.22-μm membrane fil-
ters and preserved in 50% ethanol before shipment to 
Virginia Tech in Blacksburg, VA, USA. Aliquots of 0.5-
mL AS samples were preserved in an equal volume of 
100% ethanol before shipping. DNA was extracted with 
a FastDNA SPIN kit for soil (MP Biomedicals, Solon 
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OH). Validation of the sample collection, preservation, 
and DNA extraction approach was previously published 
[36]. The resulting DNA was purified with a genomic 
DNA clean kit (Zymo Research, Irvine CA), quantified 
with a Qubit Fluorometer (ThermoFisher Scientific, 
Waltham, MA), pooled with equal mass (500 ng) from 
triplicate samples, and characterized with a Nano-
Photometer (Implen, Westlake Village, CA) to exam-
ine purity (target OD 260/230 = 2.0–2.2, OD 260/280 
> 1.8). If required, further concentration (target > 22 
ng/μL) or purification of pooled DNA was conducted 
using the Zymo genomic DNA clean kit. The absence of 
degradation during the purification step was confirmed 
by checking DNA size distribution using DNA Screen 
Tape (Agilent, Santa Clara, CA).

Nanopore sequencing
At least 1000 ng DNA was used for each library prepa-
ration using the 1D native barcoding genomic DNA 
kit (SQK-LSK108, EXP-NBD103, Oxford Nanopore 
Technologies) following the manufacturer’s protocol 
(v103_21Dec2016). Specifically, DNA fragmentation 
was conducted with a g-Tube for 1 min at 6000 rpm 
and quality checked with DNA Screen Tape. A DNA 
repair step was conducted to fix potential nicks or dam-
age to wastewater DNA. End-prep of fragmented DNA 
was conducted with an extended incubation of 30 min 
rather than the recommend 5 min for improved library 
preparation. Each sample was prepared as an individual 
library (with barcoding, but no multiplexing) and each 
was sequenced using a new flow cell (R9.0 or R9.4) in a 
MinION sequencer. Sequences were collected without 
real time base calling. Read yields varied among flow 
cells and library preps, despite efforts to control user-
end variables, such as consistent purity and quantity of 
starting DNA. We set a minimum threshold of collect-
ing 0.6 million reads per sample (post-QC reads > 0.55 
million, Table S2) for low-yield flow cells. This mini-
mum sequencing depth was determined based upon a 
subsampling test using the first batch of four samples 
(including both influent and AS), demonstrating that 
the ARG detection rate and composition were relatively 
consistent across subsampling levels from 0.6 to 3.3 
million reads (Additional file: S1). While the extraction 
procedure used herein did not include a de-circulariza-
tion step such as that used in some plasmid extractions 
[37], the mechanical bead-beating lysis step is expected 
to substantially shear genomic DNA. Furthermore, the 
N50’s of the raw reads varied between 1.97–6.2 kbp, 
which should be conducive to recovering fragment 
plasmids (considering an average size of about 50 kbp 
[38].

Sequence analysis
Sequences were base called using Albacore (v2.3.1). 
Given that all reads from each sequenced library origi-
nated from a single sample (i.e., no multiplexing), reads 
with and without identified barcodes were both used 
in the subsequent analyses. Reads in fastq files were 
uploaded to EPI2ME for analysis using the Antimicro-
bial Resistance Mapping Application (ARMA) pipeline 
(v3.1.0), which uses the CARD database (v1.1.3) for ARG 
identification [39]. The built-in cutoff for ARG identi-
fication was > 75% nucleic acid alignment identity and 
> 40% coverage. These criteria are amenable to nanopore 
data [40], which has a higher intrinsic sequencing error 
rate (10–15% for R9.4) than Illumina. Similar criteria 
have been used in other studies [26, 41] and confirmed 
to have low rates of false positive and false negative for 
nanopore reads even with simulated higher sequencing 
error rates up to 45% [42]. ARMA embedded a species 
identification pipeline, WIMP, which was applied toward 
phylogenetic identification of all reads [43]. The ARMA 
pipeline returned all ARG matches detected based on 
several CARD resistance detection models. Given the 
high error rate of nanopore reads, only ARG matches 
identified via the most conservative model—the protein 
homolog model—were retained. The names and classes 
of ARGs were manually curated to include updates from 
the CARD website (accessed April 2019) to accommo-
date possible errors resulting from the use of an earlier 
version of the CARD database employed in ARMA.

As defined in Eq. 1, for each ARG, its copy number was 
calculated as the sum of the alignment coverage over its 
reference gene for all reads with a match and then nor-
malized to the total base pairs in the sample following 
quality control (e.g., quality score ≥ 7.0, Homo sapiens 
and virus reads removed). ARG abundance is expressed 
as the equivalent full length of gene copies per Giga base 
pair of sequences (gc/Gb) in a sample.

where i is the ith unique ARG i; m is the total number 
of nanopore reads with a match to reference gene(s) for 
ARG i; and n is total number of nanopore reads in the 
sample (post quality screen). The alignment end and start 
positions, and the length of the reference gene(s) were 
outputs from ARMA.

Phylogeny was identified by the WIMP module built 
upon the Centrifuge classifier [44]. This classifier pre-
viously demonstrated high accuracy and resolution in 
microbial profiling from nanopore reads by a recent 
benchmark study [45] even though it was outperformed 
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by other classifiers for short read application [46]. A 
taxon ID of the least common ancestor (LCA) was 
reported for a read when multiple matches were found 
and was deciphered to the phylogeny according to the 
U.S. National Institutes of Health guideline [47]. Reads 
classified as eukaryotic, human (Homo sapiens), or viral 
DNA were excluded. The genome number of a taxon was 
calculated as the base pair summation of reads classified 
as this taxon divided by 3.87 Mbp, which is the median 
genome size among all sequenced bacterial genomes [48].

The location of an ARG-carrying read in a plasmid or 
chromosome was determined using PlasFlow [49]. We 
applied a recommended cutoff of 0.7, as suggested by 
the developers, as we found that significantly fewer reads 
were available for downstream contextual analysis when 
higher cutoffs (0.8 or 0.9) were used. Reads shorter than 
1000 bp were excluded from PlasFlow per the developer’s 
suggestion. Phylum classification was also provided by 
PlasFlow and agreed well with the WIMP outputs (over-
all 85–99% agreement, 95–99% for chromosome reads). 
Co-location with MGEs on ARG-carrying reads was ana-
lyzed using an in-house developed pipeline NanoARG 
[42]. NanoARG detects pathogens using NCBI entries 
corresponding to WHO-identified species [50] as well as 
the ESKAPE organisms [42].

Phages were annotated using VirSorter [51]. As Vir-
Sorter utilizes open reading frames (orfs) that may go 
undetected due to the high error rate of nanopore data, 
we also assembled a subset of samples using Canu (with 
settings corMinCoverage=0, corOutCoverage=all, 
corMhapSensitivity=high, correctedErrorRate=0.105, 
genomeSize=5m, corMaxEvidenceCoverageLocal=10, 
useGrid=false) [52]. To further classify MGEs, a database 
of bacterial MGE hallmark genes, mobileOG-db [53], was 
used to assign element class labels of transposable ele-
ment (defined as sequences derived from ISfinder [54], 
integrative elements (integrases, transposases, etc, that 
are not in ISfinder, and which do not encode conjuga-
tion machinery), or conjugative element (reads with hits 
to conjugation machinery). Reads were annotated using 
DIAMOND [55] at 25% identity and e value <  10−5

. This 
annotation method is analogous to the criteria used by 
nanoARG [42].

Statistical analysis
Data analysis was conducted in R (v3.3.3). Nonparametric 
tests including Wilcox tests (paired, unpaired, or signed 
test), Dunn test, and Kruskal test were used for compari-
sons among two or more groups. Proportion tests were 
applied to test significance in proportions. Non-metric 
multidimensional scaling (NMDS) multivariate analysis 
was based on Bray-Curtis dissimilarities in ARG profiles 
at gene levels, and in community compositions at the 

most precisely identified taxa, and was complemented 
with Adonis and ANOSIM analyses. Community correla-
tion was analyzed with Mantel test in the vegan package. 
Network analysis between ARG class and host phyla was 
visualized using the circlize and ggraph packages.

Results and discussion
The Antimicrobial Resistance Mapping Application 
(ARMA) pipeline (v3.1.0) [56] was applied for ARG iden-
tification using its default criteria (> 75% nucleic acid 
alignment identity and > 40% coverage). These criteria 
are somewhat less stringent than those typically applied 
to Illumina data, where amino acid identity (not nucleic 
acid) is commonly applied at 80–90% [8, 24, 57], but are 
appropriate for nanopore data given its higher intrin-
sic sequencing error rate (5–15% vs. 0.1–0.01% in Illu-
mina reads) [26, 41, 42]. Here, we opted for lower, rather 
than higher, stringency, to maximize the capture of true 
ARGs, while recognizing that the false positive rate will 
also likely increase. As the present study relied on rela-
tive comparisons of influent vs. AS, the exact cutoffs 
should not affect the main conclusions, as long as the 
analysis approach is consistent across samples. No size 
selection was imposed prior to or within library prep, as 
we intended to sequence every genetic material in DNA 
extracts (within which smaller fragments accounted for 
~ 15%, Fig. S1).

In total, 377 unique ARGs belonging to 16 classes of 
antibiotic resistance were detected across all study sam-
ples. The ARG detection rate was comparable to previ-
ous WWTP studies incorporating Illumina or nanopore 
sequencing platforms (Table S3). The median alignment 
accuracies reached upwards of 90%, especially for ARGs 
located on plasmids (Fig. S2), even though a lower crite-
rion (75%) had been applied. Sequencing depths and total 
ARG-carrying read base-pairs were also comparable to 
prior Illumina or nanopore studies (Table S4). Further 
read details are provided in Additional file: S3.

Total ARG relative abundance reduced in AS
Total ARG relative abundances decreased by 75–90% 
from sewage influent (192-605 gc/Gb) to AS (31-62 gc/
Gb) in all five WWTPs (paired test, p = 0.006, Fig.  1), 
despite differences in geographical factors, pre-AS 
treatment, and sampling seasons across the transect of 
WWTPs (Table S1). Notably, the substantial decreases 
observed were not driven by variable sequencing depths, 
as there was no correlation between ARG abundance and 
sequencing depth (Pearson p = 0.113). Total ARG relative 
abundances were also converted to the unit of gc/genome 
(influent 0.7-2.3 gc/genome, AS 0.1-0.24 gc/genome), 
by assuming a genome size of 3.86 Mbp (median value 
among all sequenced bacteria genomes) [48]. Our ARG 
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annotation approach (reduced matching criteria for 
higher error rate reads) was validated by the results, as 
our ARG abundances were comparable to prior analy-
ses of sewage (102-605 gc/Gb) and AS (12-945, Table S3) 
employing different analytical approaches (nanopore, 
Illumina, high throughput qPCR), relative abundance 
normalization denominators (16S rRNA genes, Gb, DNA 
biomass, total number of reads), and ARG identifica-
tion algorithms and reference databases [10, 24, 26, 57, 
58]. Substantial regional variations observed in influent 
among WWTPs also agree with a recent global sewage 
monitoring using Illumina sequencing, where samples 
obtained from Africa and Asia ranked the highest in total 
ARG abundance [9].

Despite previous concerns about biological treatment 
enhancing the mobilization and proliferation of ARGs 
[59], our results provide strong evidence that the AS pro-
cess does not result in a relative increase of total ARGs 
among the microbial community (gc/Gb). While a sys-
tematic comparison of total ARG abundance from influ-
ent to AS across multiple WWTPs like this employed 
herein has been lacking, prior studies have reported 

reductions in either individual ARGs [11, 18, 60] or the 
sum of the many ARGs assayed [23, 24, 58]. A recent 
study employing nanopore reads indicated a similar 
reduction (68–92%, calculated from their data) in three 
Hong Kong WWTPs [26]. Another study indicated an 
opposite trend of total ARG abundance increasing from 
influent to AS [10], but this discrepancy may stem from 
differing sampling locations and comparison points (i.e., 
raw vs. clarified influent).

We note that the absolute or volumetric abundance 
(i.e., gc/mL wastewater) may still increase in AS, even 
though the total ARG relative abundance substantially 
decreases, because total biomass increases one to three 
logs between the influent and the AS [17, 18]. Influent is 
usually mixed with 20–40% of returned AS to promote 
high bacterial growth rates and to enhance reduction 
of organic carbon and ammonia. The remaining AS is 
wasted from the return line each day at a rate propor-
tional to the bacterial growth rate. Thus, reduction in 
total ARG relative abundance in AS reflects an over-
all out-competition of incoming ARBs by the massive 
growth of non-ARB in AS, while selection within certain 

Fig. 1 Total ARG abundance decreased from influent (IN) to AS. Five WWTPs are labeled by location: India (IND), The United States (USA), 
Switzerland (CHE), Sweden (SWE), and Hong Kong (HKG). ARG relative abundance is shown as gene copies per Giga base pairs (gc/Gb), or per 
sequenced genome (gc/genome) estimated assuming genome sizes of a median value (3.87 Mbp). ARG classes are color‑coded and stacked with 
the most to least abundant from bottom to top
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species of ARB or for certain classes/types of ARGs can 
still occur [61].

Total ARG profiles shifted in AS
The resistome composition underwent a significant shift 
from influent sewage to AS (Fig. 2, Adonis R2 = 0.38, p 
= 0.001). Influent had more unique ARGs (355, 94% of 
all detected ARGs, all 16 classes, Fig. 2) than AS (137, 13 
classes, Fig. 2). The most abundant ARG classes in influ-
ent were multidrug resistance conferred via efflux genes 
(25–52% of total abundance), beta-lactam (14–23%), and 
aminoglycoside (6–12%) resistances, similar to previous 
reports, although the relative ranks and abundances of 
these classes differed from study to study [10, 57, 62]. In 
AS, efflux (24–60%) and beta-lactam resistance (2–32%) 
remained the two most abundant classes, while sulfona-
mide resistance became the third most abundant class 
(4–17%) followed by aminoglycoside resistance (4–20%).

Similar clustering of the influent resistome composi-
tion away from that of AS was reported for geographi-
cally-proximal WWTPs (e.g., in the same plant, city, or 
country) [10, 11, 23, 58]. Here, the overarching cluster-
ing spanning WWTPs across three continents indicated 
that the shift in ARG profiles from influent sewage to AS 
is substantial and convergent across WWTPs. This shift 

further suggests that not all ARGs have the same fate 
during treatment, rather, some ARGs are more depleted 
while others are more enriched (these ARGs are detailed 
further in Additional file: S4).

Mobility potential of ARGs
Genetic location of ARGs varied among ARG classes
The genetic location of an ARG on a plasmid, chromo-
some, or phage is suggestive of its mobility potential 
[8, 10, 26]. Herein, the genetic location of an ARG was 
characterized using PlasFlow [49], while phages were 
detected using VirSorter (for both raw nanopore reads 
and on a subset of assembled sequences, Fig. S2). While 
phages are believed to contribute to ARG spread (e.g., 
[63]), our analysis detected no ARG-harboring phages 
in either assembled or raw read data (Fig. S2), and thus 
these contigs were not analyzed further. Of note, the filter 
pore sizes (0.22 μm) applied for sample concentration are 
too large to trap most viral particles, which range in size 
of prominent features from 10 to 200 nm [64].

In contrast, among the 311 unique ARGs with iden-
tifiable genetic locations, 25% (78 ARGs) were assigned 
as plasmid-encoded, 22% (68 ARGs) only on chromo-
somes, with the remaining 53% assigned to both plas-
mids and chromosomes across samples. We observed 

Fig. 2 ARG profile shifts from influent to activated sludge (AS). The NMDS plot is based on percent abundances of individual ARGs in influent (red 
circles) or AS (blue triangles), labeled by location of WWTP: India (IND), The United States (USA), Switzerland (CHE), Sweden (SWE), and Hong Kong 
(HKG). The ellipses show 95% confidence intervals of influent or AS samples
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that the genetic location of a unique ARG was depend-
ent of the class it belongs to (Chi-square p < 0.0001, 
Fig.  3a). More unique beta-lactam ARGs were assigned 
to either plasmids (cfxA, cfxA5, etc.) or to chromosomes 
(cepA, cphA4, cphA5, etc.), but fewer were likely to be 
found on both (AER-1, LCR-1, etc.). More unique fluo-
roquinolone and trimethoprim ARGs were likely to be 
carried only on plasmids. Relatively more unique ARGs 
in the sulfonamide, tetracycline, and macrolide-lincosa-
mide-streptogramin MLS classes were assigned to both 
plasmids and chromosomes, agreeing with reports of 
their mobility between plasmids and chromosomes 
[65]. Efflux genes conferring multi-drug resistance were 

negatively associated with plasmids only, potentially due 
to increased evolution cost associated with resistance to 
a wide range of antibiotic classes or as a key feature in 
many bacteria [66].

Percent abundance of ARGs located on plasmids decreased 
in AS
We further quantified the percent of total ARG abun-
dance in each sample having plasmid-driven mobil-
ity potential. Such quantitative analysis was achievable 
owing to the fact that assembly free reads preserve the 
counts of the same DNA region (i.e., the coverage for 
an ARG), which is lost in the assembly process targeting 

Fig. 3 ARG mobility potential. a Assignment of unique ARGs to plasmids, chromosomes, or both plasmid and chromosomes across samples varied 
by ARG classes. Green and maroon circles indicate positive and negative associations, respectively, with larger circles indicating larger correlation 
residuals. Only classes with more than two unique ARGs were included in the analysis. Percent abundance of ARGs b corresponding to different 
genetic locations; c co‑located with integrative, transposable, or conjugative element hallmark genes (including transposase, integrase, and/or 
recombinase genes); or d co‑located with non‑plasmid MGEs, grouped by assigned genetic location on plasmids, chromosomes, or unclassified; 
e Schematic summary of the mobility potential change from influent to AS. While bar charts in panel b included unclassified reads (grey bars), the 
noted percentages (28%, 72%, etc.) were calculated only among classified reads in a sample, after excluding unclassified reads



Page 8 of 16Dai et al. Microbiome           (2022) 10:20 

consensus sequences [24]. Where genetic location could 
be identified (59–71% of total ARG abundance, leav-
ing 29–41% unclassified), putative plasmid-borne ARGs 
accounted for 40–73% of ARG abundance (excluding 
unclassified ARG abundance) in influent and 31–68% in 
AS across the five WWTPs (Fig. 3b). Relative to the influ-
ent, the percent abundance of ARGs assigned to plas-
mids decreased in AS at all WWTPs except Hong Kong 
(thus non-significant across five WWTPs, p = 0.84). This 
decrease was statistically significant within two WWTPs 
(IND and USA, p < 0.004), which also happened to have 
the highest percent abundances of plasmid associated 
ARGs in the sewage influents. Similar decreasing trends 
were observed within several ARG classes, such as efflux 
and MLS resistance (Table S5). Notably, plasmid-associ-
ated ARGs belonging to beta-lactam and fluoroquinolone 
resistance classes also tended to decrease in their percent 
abundance, even though more unique genes within these 
classes were associated with plasmids (Fig.  3a). Assum-
ing that plasmid-borne ARGs are more likely to transfer 
horizontally than chromosome-borne ARGs [67], the 
percent reduction of putative plasmid-borne ARG abun-
dance in AS in four out of five WWTPs is a positive sign 
that AS reduces the overall potential for horizontal gene 
transfer [7, 8]. Nonetheless, 31–68% of total ARG relative 
abundance remains on plasmids in AS and could pose 
a lingering mobility concern. We could not find other 
reports on the percent abundance of ARGs being carried 
on plasmids (not the percent of unique ARGs being on 
plasmids) from metagenomics samples other than waste-
water [26]. This is likely because abundance information 
is lost when reads are assembled [68] thus restricting 
prior reports to qualitative descriptions [8, 24].

The percent abundance of ARG‑harboring MGEs decreased 
in AS
Co-location with MGE hallmark genes on chromosomes 
or on plasmids (exemplar MGE reference genes listed in 
Fig. S3 legend) may be indicative of potential ARG mobil-
ity. We found that 33% of 377 unique ARGs detected in 
this study were co-located on reads encoding hallmarks 
of integrative, transposable, or conjugative elements. The 
proportion of ARGs encoded on reads without MGE 
hallmark genes increased in four of five WWTPs from 
influent to AS (increases ranging from 9.8 to 18.0%), 
while, conversely, the proportion of ARGs encoded 
with integrative, transposable, and conjugative elements 
decreased or remained at similar levels at these plants 
in AS (decreases ranging from 0.43–13.0%) (Fig. 3c, Fig. 
S5). Exceptions to this trend was the Hong Kong WWTP 
which saw a slight increase in MGE-associated ARGs 
(1.4–2.4%) and the India WWTP in which ARG-asso-
ciated transposable elements slightly increased (which 

increased about 3.5%). These results are consistent with 
a reduction in plasmid sequences in four of five plants 
(Fig. 3b) considering plasmids more frequently encoded 
MGE-associated ARGs than did chromosomal or unclas-
sified sequences (p < 0.0001) (Fig. 3d).

When grouping ARGs by their genetic locations, we 
found that ARG-harboring MGEs were more frequently 
encoded on plasmids (1–60% abundance) than on chro-
mosomal reads (1–24% abundance) or on unclassified 
reads (1–45% abundance, p < 0.00001, Fig.  3d) for both 
influent and AS samples. Integrative elements were the 
most common MGE class (21–60%) found on plasmids. 
ARGs that are encoded on plasmids or other MGEs likely 
have elevated mobility, which could enable their persis-
tence and dissemination under selective pressure [69]. 
Compared to influent samples, we did find a signifi-
cant decrease in the percent abundance of these genes 
with elevated mobility potential in AS (p < 0.00001, Fig. 
S4). Together, considering this international transect 
of WWTPs as biological replicates, our results are not 
supportive of the hypothesis of an overall selection for 
or enrichment of ARGs with mobility potential in AS 
(Fig.  3b,e), although an individual WWTP (e.g., Hong 
Kong in this study) may exhibit an increased percent 
abundance for ARGs with plasmid MGE mobility. This 
result agreed with a prior nanopore study of three Hong 
Kong WWTPs [26].

The percent of ARGs that co-occurred with MGE (inte-
grative, transposable, and conjugative elements) hallmark 
genes varied among resistance classes (p < 0.0001, Fig. 
S6). For instance, 37.5% of glycopeptide resistance genes 
were co-localized with conjugative element hallmark 
genes, while 28.7% and 29.0% of aminoglycosides and 
sulfonamide resistance genes, respectively occurred on 
reads with integrative element hallmark genes. By con-
trast, efflux pumps were the least frequently found to be 
co-localized with MGEs (0.41–4.66%). These results sup-
port prior observations that some resistance classes have 
greater potential to be spread horizontally [17, 70].

ARG hosts: the ARB population
ARB represented a distinct subset of the whole bacterial 
community
Genes neighboring ARGs on the same nanopore reads 
were analyzed to assess the likely taxonomy of host 
bacteria. It must be noted that there is inherent uncer-
tainty in such analysis, even with long nanopore reads, 
because the taxonomic predictive value may vary among 
neighboring genes [46]. Such assignments are even more 
uncertain for plasmid reads, because they may be hosted 
by different taxa [49]. Moreover, available databases of 
whole genomes and plasmids are limited, and these limi-
tations may introduce bias in the analysis toward what 
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has been deposited in the databases [49]. Bearing these 
uncertainties in mind, we applied the WIMP module 
within the ARMA pipeline [56] to predict taxonomic 
identity for all reads, including those carrying ARGs. This 
approach assigns the putative taxonomic identity based 
on the least common ancestor (LCA) in the cases where 
multiple matches are found for a single read [56].

The ARB population was consistently distinct in their 
taxonomic composition relative to that of the whole bac-
terial community in both influent (ANOSIM R = 0.852, 
p = 0.009) and AS (R = 0.476, p = 0.018, Fig. 4a). ARB 
population was characterized with 20-fold lower num-
ber of taxa (mean 185 vs. 4810, p < 0.001), lower Shan-
non diversity (mean 4.4 vs. 6.5, p < 0.001), and higher 
β-diversity (larger ellipse sizes in Fig. 4a) than the bacte-
rial community as a whole. This result suggests that ARBs 
were not a random subset of the whole community and 
that some taxa were more likely to be antibiotic resistant. 
The ARB population included both abundant (Proteo-
bacteria, Firmicutes, Actinobacteria, and Bacteroidetes) 
and minor phyla (Fig.  4b), generally agreeing with con-
clusions from a previous study applying a different meth-
odology (epicPCR) in taxonomy identification of ARGs 
[62]. While it is not possible from a study of this nature 
to determine the drivers of the shifts in each taxonomic 
group, previous research has implicated the stochastic 

processes of dispersal and drift as well as determinis-
tic factors (such as temperature and organic input) as 
important parameters in shaping the AS microbial com-
munity [20]. For anaerobes in particular (e.g., members 
of the phyla Bacteroidetes and Firmicutes) the shift from 
anaerobic to aerobic conditions is likely a key driver.

ARB population shifted from influent to activated sludge
The ARB populations in AS were distinct in taxonomic 
composition relative to those in the influent (ANOSIM R 
= 0.83, p = 0.01), even though among-WWTP variations 
were substantial (mean among-sample similarities is only 
25%, Fig. 4a). A notable difference at the phylum level in 
AS was the decreased relative abundance of Bacterio-
detes (which decreased from 8.7 to 1.3%) and Firmicutes 
(which decreased from 9.3 to 2.5%) in ARBs, compared 
to influent ARB populations. Bacteriodetes and Firmi-
cutes, both largely anaerobic phyla, are dominant human 
gut microbiota and are taxa that contain fecal pathogens 
and ARBs [21, 71]. Their relative abundance in the influ-
ent ARB population is consistent with the expectation 
that fecal bacteria are a primary contributor of ARBs in 
sewage [72]. Their reduction in AS may result from them 
being outcompeted by other phyla (e.g., Actinobacte-
ria) that are more adapted to and more actively growing 
in the richly oxygenated AS environment, which fosters 

Fig. 4 Distinct taxonomic profiles of the bacterial community. Taxonomic profiles of bacterial communities as whole or corresponding subsets of 
ARB populations were found to be distinct in both the influent (IN) and activated sludge (AS). Bacterial communities as a whole (i.e., all nanopore 
reads that could be taxonomically classified) and ARB populations (i.e., ARG‑carrying reads that could be taxonomically classified, regardless of their 
genetic location on chromosomes, plasmids, or unidentified) are shown (a) clustered separately on an NMDS plot based on taxon abundances and 
(b) as representing distinct proportions of the ten most abundant phyla. The ellipses on panel A indicate 95% confidence interval among samples 
in a group
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a microbiome more similar to that of freshwater or soil 
than the human gut [20].

Shift in ARG profiles correlates with a shift in the ARB 
populations and the whole community
The shift of ARG profiles from influent to AS (Fig.  2a) 
significantly correlated with the compositional changes 
of the whole bacterial community or the ARB popula-
tion (Mantel correlation r = 0.45–0.47, p = 0.002–0.007). 
Furthermore, host phylum shifts of putatively plasmid-
borne or of chromosome-borne ARGs also correlated 
with changes in the whole bacterial community (r = 
0.29–0.34, p = 0.028 and 0.006, Fig. S7). Host phyla of 
plasmid and chromosome-associated reads as predicted 
by PlasFlow [49] agreed with WIMP results, particularly 
for chromosome-reads (95–99% agreement). Positive 
correlations between ARG profiles and bacterial com-
munity compositions have been previously reported [10]. 
Consistent with this, our results suggest that not only the 
resistome, but also the ARB hosts, are closely associated 
with shifts in the broader bacterial community during the 
AS process. However, when the correlation analysis was 
restricted within the same sample type (influent or AS), 
we found that host phyla of chromosome-borne ARGs, 
but not of plasmid-borne ARGs (p = 0.12–0.5), corre-
lated with the composition of the bacterial community as 
a whole (p = 0.025, r = 0.56). This may stem from the fact 
that host assignments are much more tentative for plas-
mids than chromosomes. This finding is also expected as 
plasmid-borne ARGs may occur across multiple species 
and behave independently of the host, which is known to 
be the case for many plasmids found in WWTPs [73, 74].

Putative pathogenic ARBs decreased in AS
Logically, pathogenic ARBs pose a greater risk to human 
health than non-pathogenic ARBs. Recognizing that tax-
onomic resolution obtainable from nanopore reads can 
be at variable levels, we examined the most precise taxo-
nomic resolution achievable for each read toward identi-
fying putative pathogens. Here, putative pathogens were 
limited to those classified by the World Health Organiza-
tion as critical top priority pathogens for which new anti-
biotics are urgently needed and/or ESKAPE pathogens 
[50, 75].

We found that the percent abundance of non-plasmid 
ARGs in putative pathogens significantly decreased from 
13–47% in influent to 4–13% in AS in all WWTPs (p = 
0.005, Fig. S7). Similarly, among ARGs that were detect-
able in both influent and AS, percent abundance of ARGs 
hosted by putative pathogens also decreased (7–32% in 
influent to 2–11% in AS, p = 0.03). Note that the analysis 
here was restricted to the ARGs not encoded on plasmids 
due to higher uncertainties in taxonomic identification 

for plasmid sequences. These results suggest that ARB 
populations shift toward non-pathogenic ARG carriers in 
AS. This transition may result from decreased numbers 
of these putative pathogens in AS whole community (Fig. 
S8), which suggests their less favorable survival in AS 
environment than other microbes, regardless of carrying 
an ARG or not. The transition may be also due to ARG 
transfer from pathogens to non-pathogenic species [76].

Who carries which ARGs? Additional contextual 
information yielded from nanopore sequencing
Fixed connections between ARG class and host phylum
Physical linkages between ARGs (at the class level) and 
their hosts are illustrated via network analysis in Fig.  5. 
Here, host phylum is illustrated only for non-plasmid 
borne ARGs while plasmid-borne ARGs are grouped 
separately as “plasmid,” because of the higher uncer-
tainty in assigning host taxonomy to plasmids [74, 77]. 
Although substantial variation was observed among the 
five WWTPs, a few key patterns were identified for non-
plasmid ARGs.

We found that certain ARG classes tended to be pref-
erentially hosted by specific phyla in the influent. For 
example, the efflux class was hosted predominantly in 
Proteobacteria (65–92%) in all except Swedish influent, 
where 32% of efflux abundance was found in Firmicutes. 
Aminoglycoside resistance was carried mainly in Proteo-
bacteria (60–85%). Beta-lactam resistance was carried 
by Proteobacteria in all influents (51–75%), except Hong 
Kong, where 59% was from unclassified taxa. In contrast, 
tetracycline resistance was carried by Bacteroidetes (22–
62%) and Firmicutes (20–27%), yet rarely by Proteobacte-
ria (< 3%). MLS (macrolide-lincosamide-streptogramin) 
ARGs were more evenly distributed among several phyla, 
yet 69% of them were carried in Firmicutes in Swedish 
sewage.

Fixed connections between ARG class and host phyla 
were also observed in AS. The preferential host phyla 
of an ARG class is consistent with the understanding 
that transfer of chromosomal ARGs across phyla is very 
rare, even though some examples of transfers between 
Gram positive and Gram negative bacteria have been 
reported [74].

Contextual taxonomic connections were consistent 
among ARGs from influent to AS. For example, efflux 
ARGs and aminoglycoside ARGs were hosted predomi-
nantly by Proteobacteria both in influent and AS. Hosts 
of beta-lactam ARGs remained similar in influent and 
AS at four WWTPs (mean 46% from Proteobacteria and 
30% in plasmids) except in Hong Kong, where 31% was 
from unclassified reads. This consistency indicates that 
ARG-host connections were maintained after active bio-
mass growth in the AS process, consistent with vertical 
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transfer being the key pathway for chromosomal ARG 
dissemination and limited across-phyla horizontal trans-
fer of ARGs. Similarly, horizontal transfer of chromo-
somal MGEs was reported to be rare across phyla in gut 
environments [78].

Diversity of ARGs hosted by putative pathogens decreased 
in AS
As was observed for the other measures discussed above, 
the diversity and abundance of non-plasmid ARGs 
hosted by putative pathogens decreased sharply in the AS 
process in all WWTPs. Multiple best matches for ARGs 
of the same series (e.g., GES-7, -10, -13, -20, etc.) and 
the full set of ARGs for efflux pumps were often identi-
fied in putative pathogens in influent. Key examples 
include the beta-lactam ARGs carried by Pseudomonas 
aeruginosa (best matches to 4 GES genes and 2 OXA 
genes), Klebsiella pneumoniae (7 VEB genes), and Sal-
monella enterica (OXA-368 and 3 CMY genes) in Indian 
influent (Fig.  6), and similarly in other influents (Fig. 
S9-12). This finding suggests a high genotypic diversity 
in these putative pathogens that may be beta-lactam or 
even carbapenem resistant (with best matches to KPC-
11, VIM-8). Efflux genes were widely carried by E. coli, 
including individual genes (e.g., mefB, emrB, emrD) and 
operons encoding efflux complexes (e.g., MdtEF-TolC, 

MdtABC-TolC) and their regulators (e.g., CRP) (Fig.  6, 
S9-12). sul1 was found to be hosted by several puta-
tive pathogens at high abundances. By contrast, many 
efflux and beta-lactam ARGs were no longer detected 
and only two sulfonamide ARGs (sul1, sul2) and ami-
noglycoside ARGs (aadA5,6,16, APH(6)-Id) remained 
detectable in AS (Fig. S9-13). Of MGE-associated ARGs 
detected in both influent and AS samples (n = 71), only 
10 displayed modest increases (of 1-100%), with no ARG 
being enriched in more than one WWTP. The rest of the 
mobile ARGs decreased 3-10,000% in AS (Fig. S14).

Nanopore sequencing provides the ability to con-
textualize ARGs without the need for assembly, which 
is a highly complex and error-prone process. Prior 
work has demonstrated that assembled short reads 
produced distinct patterns of ARG contextualization 
compared to long reads, such as those generated by 
nanopore [79]. Here, nanopore sequencing enabled 
an assembly-free contextual analysis of samples col-
lected from five WWTPs located on three continents, 
analyzed as a diverse range of biological replicates, to 
determine whether AS has a net amplifying or attenu-
ating force on the dissemination of ARGs. Our results 
suggest that, overall, the AS process acted as a micro-
bial ecological constraint, that attenuated, rather than 
enriched, the total ARG abundance (normalized to all 

Fig. 5 Connections between ARG classes and their putative locations on plasmids or bacteria host phyla. Circular plots are derived from the 
abundance of ARGs (gc/Gb) in influent (IN‑ top row) and activated sludge (AS‑ bottom row) from the five WWTPs. Classes of antibiotic resistance 
are plotted on the left half of the semi‑circles and are color‑coded. The assignments of ARG putatively hosted by plasmids or by various phyla are 
plotted along the right half of the circles and are coded with grey levels
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sequenced nucleotides, gc/Gb) and those carried by 
putative pathogens in all five WWTPs. Despite dif-
ferences in geographic, operational, and other param-
eters, we found that the WWTPs sampled herein had 
similar shifts in profiles of ARGs (Fig. 1, Fig. 2), MGEs 
(Fig.  3), and ARBs (Fig.  4A) across each plant. An 
exception here is that two of five WWTPs (the Hong 
Kong and India WWTPs) had mixed results in the 
levels of MGE-associated ARGs from influent to AS. 
While further work is needed to elucidate the impli-
cations, these results do indicate substantial variation 
in MGE-dynamics in globally distributed sewage and 
their recipient AS.

Furthermore, a mostly attenuating effect of AS on 
ARGs, MGEs, and ARG-harboring MGEs was observed 
across all WWTPs surveyed. This was in part due to a 
decrease in abundance of ARG-harboring plasmids 
(40–73% abundance to 31–68%) in four WWTPs. While 
resistomes and bacterial communities shifted substan-
tially during AS treatment, ARG host phyla for a par-
ticular ARG class remained relatively consistent. These 
results suggest that chromosomal ARGs, even when 
harbored on MGEs, primarily proliferated as a func-
tion of host replication (i.e., cellular growth) in the 
AS process. It should be noted that metagenomics as 

utilized here is unable to distinguish between DNA pro-
duced from viable and non-viable (dead) cells. Thus, it 
is unknown whether the putative ARG-harboring reads 
are derived from viable cells, which may influence the 
biological interpretation of our results. However, our 
work is consistent with prior investigations [16] that 
leveraged exclusively culture-based evidence and found 
no evidence of selective pressure in the wastewater 
treatment process.

Conclusions
This study employs nanopore sequencing to yield quan-
titative contextual information about ARGs that suggest 
that the AS process in conventional WWTPs does not 
create a conducive environment for the proliferation of 
ARGs or ARBs. However, ARGs associated with MGEs in 
some individual WWTPs proliferated in AS and may be 
considered as potential surveillance targets.

Abbreviations
ARB: Antibiotic resistant bacteria; ARGs: Antibiotic resistance genes; AS: 
Activated sludge; ARMA: Antimicrobial Resistance Mapping Application; LCA: 
Least common ancestor; MGEs: Mobile genetic elements; MLS: Macrolide‑
lincosamide‑streptogramin; NMDS: Non‑metric multidimensional scaling; 
WWTPs: Wastewater treatment plants.

Fig. 6 ARGs and their abundances in putative pathogens. Network analysis illustrating ARGs that were carried by putative pathogens (enlisted as 
critical top priority pathogens by WHO and/or as ESKAPE pathogens) in (a) influent (IN) and (b) activated sludge (AS) from the Indian WWTP, as an 
example (network analyses for other WWTPs are available in the SI). The width of edges indicates the abundance of ARGs, and the size of pathogen 
nodes indicates the summation of ARG abundance hosted by a particular pathogen. Note that different scales of edge width and node size are 
used in panels (a) and (b). ARGs are color‑coded based on the class to which they belong
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Additional file 1: Fig. S1. Size and mass distribution of extracted DNA 
after purification. Measurement was conducted on an Agilent high sensi‑
tivity TapeStation. This analysis demonstrated that 13.4% of extracted DNA 
has fragment smaller than 4851 bp, likely resulted from mechanical cell 
lysis of bead‑beating in the extraction process. Fig. S2. VirSorter predicted 
numerous phages in the raw or assembled nanopore reads. (a). Both raw 
and assembled nanopore reads produced thousands of viral contigs. Cat1: 
VirSorter category 1 (most confident phage read/contig); Cat2: Virsorter 
category 2: (intermediate confidence phage read/contig); cat4: VirSorter 
category 4 (confident prophages). (b) Taxonomy of the best hits for each 
mobileOG present on the VirSorter‑classified reads. (c) The majority of 
mobileOG‑db hits (290 of 312) had identity values less than 60% and 
bitscore values under 100. (d) Only four shared mobileOGs were detected 
(mobileOG_000109022: clpB; chaperone, mobileOG_000314698: insF, 
integrase; mobileOG_000363469: intF, integrase; mobileOG_000712576: 
Lambda like terminase). Fig. S3. Alignment accuracy (%) of identified ARG 
sequences in nanopore reads to their reference genes. The alignment 
accuracy shows the percentage of base pairs in a nanopore read match‑
ing the reference ARG. Asterisks indicate significant difference (p<0.01) 
in alignment accuracies between ARGs located in plasmids and those 
in chromosomes. Fig. S4. The percentage of total number of unique 
ARGs being co‑located with non‑plasmid MGEs (including transposase, 
integrase, or recombinase genes) on the same nanopore reads mostly 
decreased (<1% ‑ 21.5%). Examples of hallmark genes that were detected 
include transposase genes include matches with multiple IS family 
transposase (e.g., IS3, IS5, IS6, IS91, IS1595) from various species, DDE 
transposase, etc. Integrase genes include integron integrase, site‑specific 
integrase, and intl1. Recombinase genes include multispecies recombi‑
nase protein family, tnpR, etc. “Other” category MGEs refer to matches with 
mobileOG‑db that were not components of integrative, transposable, or 
conjugative elements. Examples include repA and toxin‑antitoxin systems, 
among others. Fig. S5. Length (kb) distribution of nanopore reads from 
influent (IN) and activated sludge (AS) samples from five WWTPs located 
in India (IND), United States (USA), Switzerland (CHE), Sweden (SWE), and 
Hong Kong (HKG). Fig. S6. Percentage of ARG abundance co‑located with 
hallmarks of transposable, integrative, conjugative and (other) element 
types. for each ARG class in the ten samples (red Asterix indicate statisti‑
cally element type‑drug class pairs, inferred with the null hypothesis 
of equal proportions). The percentage was calculated by dividing ARG 
abundance co‑located with non‑plasmid MGEs by ARG abundance within 
a certain ARG class. Box plots shows summary statistics (median, 75 and 
25 percentiles, minimum and maximum) in the ten samples. TE: transpos‑
able element. Fig. S7. Percentage of ARG abundance from different 
phyla for plasmid‑borne or chromosome‑borne ARGs in an influent (IN) 
or activated sludge (AS) sample. Phylum identification for plasmid‑borne 
or chromosome‑borne ARGs was based on output from the PlasFlow 
pipeline, based on host taxonomy of reference plasmids or whole 
genome databases. The phylum identification agreed with the outputs 
from the ARMA pipeline. ARG‑carrying nanopore reads with no phylum 
identified were labeled as unclassified. Fig. S8. Fate of putative pathogens 
from influent to AS. (a) Percent abundance of ARGs carried in putative 
pathogens and (b) percent abundance of these putative pathogens in 
the whole microbial community (independent of whether the pathogen 
carries an ARG) in influent and activated sludge samples from the five 
WWTPs. Putative pathogens were limited to those classified as critical 
top priority pathogens (e.g., Enterobacteriaceae, A. baumannii) by WHO 
and/or as ESKAPE pathogens. Fig. S9. Network analysis illustrating that 
ARGs were all associated with pathogen‑containing taxonomic groups 
in influent (a) and activated sludge (b) in samples from the WWTP in the 
United States (USA). Fig. S10. Network analysis illustrating that ARGs were 
all associated with pathogen‑containing taxonomic groups in influent (a) 
and activated sludge (b) in samples from the WWTP in Switzerland (CHE). 
Fig. S11. Network analysis illustrating that ARGs were all associated with 

pathogen‑containing taxonomic groups in influent (a) and activated 
sludge (b) in samples from the WWTP Sweden (SWE). Fig. S12. Network 
analysis illustrating that ARGs were all associated with pathogen‑
containing taxonomic groups in influent (a) and activated sludge (b) in 
samples from the WWTP in Hong Kong (HKG). Fig. S13. Individual ARGs 
that significantly increased (a) or decreased (b) in their abundances (gc/
Gb) from influent to AS. Numbers denoted in panel b indicate the median 
percent reduction in gene abundance from influent to AS. Fig. S14. Fate 
of mobile ARGs across the WWTPs sampled here. Log‑fold change in ARG 
abundance was calculated as the log of the ratio between AS abundance 
and influent abundance (normalized as gene copies per Gbp). Fig. S15. 
ARG detection rate and profile change with sequencing depth varying 
from 0.68 to 3.3 million reads. Bar chart by indicates ARG class profile 
with sequencing depth. MDS plot considers individual ARG abundances. 
Both influent (IN) and activated sludge (AS) samples from India (IND), 
Hong Kong (HKG), and Switzerland (CHE) were subsampled to the lowest 
depth (0.68 million reads), 1.0, half of all reads (1.35, 1.6) and full depth 
(2.7, and 3.3 million reads). Table S1. Sampled WWTPs from five locations. 
Table S2. Nanopore read statistics. Table S3. Converted ARG abundances 
from prior studies* of wastewater treatment plants. Table S4. Compara‑
tive sequencing depth, counts and base pairs in ARG‑carrying reads/
contigs identified in this study to exemplar references applying Illumina 
or ONT sequencing platforms to study wastewater samples from WWTPs. 
Table S5. Percentage of ARG abundance on plasmids for each ARG class 
and sample location.
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