Course Contents

Торіс	Contents
0. Introduction and	Overview of course structure: topics, references, computer lab classes.
overview	How to model fracture: fracture mechanics (sharp cracks) vs damage
	mechanics (diffuse cracks).
1. Linear elastic fracture	Basic concepts in linear elastic fracture mechanics: Griffith energetic
mechanics (LFEM)	approach, fracture toughness; crack tip stress fields; energy release rate;
	stress intensity factors, J-integrals, interaction integrals, the virtual crack
	closure technique.
2. Discontinuous	Computational models based on sharp cracks (jumps in the displacement
computational models	field):
	2.1 The cohesive zone model (CZM): traction-separation laws; crack path
	consists of element edges / faces.
	2.2 The extended finite element method (XFEM): jump enrichment of the
	displacement field; crack path across elements.
	2.3 Generalized FEM for LEFM: Conditioning control; Application examples.
3. Continuous	Computational models based on diffuse cracks (bands of strain
computational models	concentration):
	3.1 Continuum damage models: mesh sensitivity of local damage models;
	need to regularise softening; integral-type nonlocal models; gradient-
	enhanced nonlocal damage models.
	3.2 Phase-field models: the energetic viewpoint; equilibrium and phase-field
	equations; tension-compression splits; history variable; staggered
	algorithmic solution.
	3.3 Similarities and differences between damage models and phase-field
	models
4. Advanced topics	Overview of current research topic in computational fracture mechanics:
	continuous-discontinuous models; adaptive strategies; multiphysics
	applications.

Computer Lab component

Numerical Experiment	Brief Description
1. The	Discuss the efficient implementation of XFEM, with emphasis on i) handling
extended/generalized	of enriched degrees of freedom and <i>ii</i>) numerical integration on cut
finite element method	elements.
2. Local damage models	Discuss the following aspects: <i>i</i>) the monolithic Newton-Raphson solution of
	the nonlinear system of equations and <i>ii</i>) the mesh-sensitivity of local
	models and the need to regularise softening.
3. Gradient-enhanced	Discuss the gradient enhancement of a damage model, with emphasis on i)
models	the role of the internal length and <i>ii</i>) the mesh insensitivity.
4. Phase-field models 1	Discuss the efficient implementation of a phase-field model, with emphasis
	on i) the role of the internal length and ii) the staggered algorithmic
	solution.
5. Phase-field models 2	Run an adaptive phase-field code to model crack propagation, branching
	and merging, to illustrate the need for adaptivity and its impact in reducing
	computational cost.